Vivekananda College of Engineering & Technology, Puttur [A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.10 BS 29/06/22

CONTINUOUS INTERNAL EVALUATION - 3

Dept:BS(MAT)	Sem / Div: IV/A&B	Sub: Complex Analysis, Probability and Statistical Methods	S Code: 18MAT41	
Date: 04/07/2022	Time: 9:30-11:00 am	Max Marks: 50	Elective: N	

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's
	PART A .			
1 a	Derive Cauchy-Riemann equation in the Polar form.	8	L2	COI
b	Find the analytic function $f(z)$ whose real part is $u=e^{2x}(x\cos 2y - y\sin 2y)$	8	L2	CO1
C	Show $u=x^3-3xy^2+3x^2-3y^2+1$ is harmonic and find its harmonic conjugate. Also find the corresponding analytic function.		L2	CO1
	OR			
2 a	Show that real and imaginary parts of an analytic function are harmonic in Cartesian form.	8	L2	CO1
b	Show that $w=z''$ where n is a positive integer is analytic and hence find its derivative.	8	L2	COI
C	Find the analytic function $f(z)$ given $u-v=e^{x}(\cos y-\sin y)$	9	L2	COI
	PART B			
3 a	Evaluate $\int \frac{dz}{z^2-4}$ over the following curves	8	L3	CO1
		Dage:	1/2	

T	I	(a) $ z =3$ (b) $ z+2 =1$			
	t	State and prove Cauchy's Theorem.	8	L3	CO1
	C	Discuss the transformation $w=z^2$. 9	L3	CO1
		OR			
4		Verify Cauchy's theorem for $f(z)=z^2$ where C is the square having the vertices $(0,0),(1,0),(1,1)$ and $(0,1)$	8	L3	CO1
	b	State and prove Cauchy's integral formula.	8	L3	CO1
		Find the Bilinear transformation which maps $z=\infty, i, 0$ into $w=-1, -i, 1$. Also find the fixed points of the transformation.	9	L2	CO1

Prepared by: Madhavi R Pai

HOD: Prof. M Ramahanda kamath